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The integrate-and-fire (IF) neuron model and the piecewise-linear version of FitzHugh-Nagumo (PL) neuron
model with a time scale parameter w are frequently being used in the study of synchronization phenomena.
Although the two models are regarded to be different type, we show a certain equivalence between them by
deriving the coupled IF model of an improved version with a firing duration from the recovery variable coupled
system of the PL model, under taking the limit of x— 0 without a loss of any coupling properties. In the
coupled IF model with the duration time, the synchronization behavior of a pair of neurons with excitatory or
inhibitory synaptic coupling can be systematically explored in terms of three parameters in the model (synaptic
strength, decaying relaxation rate of the synaptic coupling, and the parameter exhibiting the firing duration).
We find some irregularly synchronous behavior with or without constant firing order alternations. We show that
the duration of an impulse plays an important role in synchronization phenomena.
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I. INTRODUCTION

Mammalian nervous systems exhibit a diversity of syn-
chronized behaviors such as a transition from a periodic orbit
to a chaotic attractor, attraction to a periodic orbit, and noise-
induced synchronization [1-4]. It has been supposed that
theoretical studies of such synchronized behaviors in neu-
ronal assemblies play an important role in our understanding
of information processing in the nervous systems.

A prominent example in which the nonlinear dynamic be-
havior has been successfully studied is the synchronous fir-
ing of interconnected neurons. Such synchronous firing can
be found in the sensory processing of cat visual cortex [5-7].
Synchronized behavior in the nervous systems can be fre-
quently illustrated as a nonlinear dynamical model of large
and small numbers of coupled oscillators [8—15].

There have thus far been many models for the synaptic
interactions between neurons. As a representative of the stan-
dard synaptic model, two types of coupling are found in a
real nervous system. One is the chemical synapse while the
other is the electrical synapse [12,13]. In particular, the elec-
trical synapse has been regarded as a plausible mechanism
for controlling synchronized oscillations in inhibitorily
coupled neurons [16,17].

Regarding the intrinsic membrane properties, various
types of neuronal oscillators, ranging from theoretically
tractable models to biophysical conductance-based models
[18-21], have been put forward. In particular, for the
theoretically tractable model, integrate-and-fire (IF) [22],
FitzHugh-Nagumo (FHN) [23,24], and piecewise-linear (PL)
models [25] are well known as mathematical models of neu-
ral activity. They can frequently be classified into types I and
IT due to the different dynamical properties. If in the type I
model, a constant applied current is slowly increased, the
neuronal dynamic changes from stationary to oscillatory with
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zero frequency. Meanwhile for the type II model, the onset

occurs with nonzero frequency. The IF model is regarded as

type I while the FHN and PL models are type IT [26-28].
In general, the FHN model is given by

d 1

d—:=—§x3+x—y+lup, (1)
dy
— = +a->by), 2
i w(x +a—by) ()

where x is called the excitation variable and represents the
membrane potential, while y is called the recovery variable
[29], @ and b are constants. I,,, is the applied current and
u(>0) is a time scale parameter.

This model has sometimes been utilized in order to find
noise-induced synchronization in real neurons and electrical
circuits [3,30]. The specific position of a noise source in the
FHN model [that is dependent on whether the noise source is
in Eq. (1) or Eq. (2)] was thought to be very important for
quantitative estimations. The effect of noise in Eq. (2) ap-
pears to be much more dominant compared to inserting into
Eq. (1), [3]. However, a comparison of whether the coupling
term taking the same form is inserted into the x or y dynam-
ics has not yet been performed.

The IF model has high practicality for modeling behavior
in real nervous systems, in spite of very simple firing dynam-
ics without the firing duration [11,31,32]. Improved versions
of the IF models with a refractory period [33,34] or a firing
duration have also been suggested. One can also see the IF
model exhibiting exponentially rapid rising membrane po-
tential after having fired [35] and the double integrate-and-
fire (DIF) model [36,37]. The study using the former model
shed light on the fact that shape and size of the neuron spike
play a role in the scheme of synchronization phenomena in
either two or more electrically coupled neurons.

It has been widely known that the FHN model as above is
a simplification of the biophysical conductance-based model
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such as the Hodgkin-Huxley (HH) model. But it is still un-
clear how the standard as well as improved IF models are
simplified from another theoretically tractable or biophysical
conductance-based model. No one has discussed whether the
above classification between the IF and PL (or FHN) models
can be validated.

The aim of this paper is to study the qualitative relation-
ship between systems of a pair of coupled IF neurons and the
coupled PL ones. For this aim, we are interested in synchro-
nous behavior of the coupled PL neurons for the case that the
synaptic coupling is added in the y dynamics of the PL mod-
els. We analyze an accurately solvable model of two neurons
coupled via chemical synapses. We find out how the width of
an action potential of neuron models, as well as dynamic
properties of synaptic coupling, influences a scheme of syn-
chronized oscillations.

The outline of this paper is as follows. In Sec. II, we use
two interconnected neural oscillators of the PL type with
excitatory or inhibitory synaptic couplings. The phase plane
analysis using the singular perturbation approach [38—41] is
employed, because the PL model in general demonstrates
relaxation oscillations that split the dynamics into slow and
fast components. For synaptic coupling, we use first-order
kinetics of the gating variable for inactivation [42] instead of
incorporating an « function [43]. Moreover, we introduce an
assumption that dynamics for recovery and synaptic vari-
ables, which can be parametrized by the same time scale, are
slower than membrane potential dynamics. We investigate
the difference between cases in which the synaptic coupling
is in the membrane potential or the recovery dynamics. By
using these ideas, we show that as u—0, the membrane
potential oscillates between the active and inactive phases
with instantaneous transitions between the two phases
[44-47]. Interestingly enough, the y-coupled PL model is
generalized to the coupled IF one without a loss of dynamic
properties in the synaptic models.

In Sec. III, we make use of a return map of the solutions
to the y-coupled PL equations, in order to investigate the role
of the width of an action potential in synchronization phe-
nomena. The return map can be analytically constructed by
assigning the iterated point as the state of two coupled neu-
rons that occur immediately after one of them has fired. Such
a map enables us to investigate the condition in which the
two-neuron system achieves a completely synchronous state
(often called in-phase synchronization) as well as the out-of-
phase state (for example, the antiphase synchronization), in
terms of the parameters of the synaptic model and the neuron
model.

In Sec. IV, we present the results by drawing a phase
diagram of the parameter space of the strength and the de-
caying relaxation rate of synaptic couplings, due to the dif-
fering width of an action potential. In the case of excitatory
coupling, if the decaying relaxation rate is large, two neurons
approach the synchronous state, but not a complete synchro-
nous state. When the rate is small, they show an antiphase
state. They go forward in-phase or quasi-in-phase for any
decaying rates, depending on the firing duration. In the case
of inhibitory coupling, differences between the two neurons
change from in phase or antiphase states to only the in-phase
state, depending on the initial conditions and the decaying
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relaxation rate of the synaptic coupling. In particular, when
strong coupling occurs, various irregular synchronization
phenomena are found. These results are in agreement with
numerical simulations, which are conducted using the fourth-
order Runge-Kutta method for the FHN and the PL models.
In order to survey a region of a time scale parameter u where
the return map method can be applied, we employ a phase
reduction method [48-52]. The phase reduction method has
been a well-known and useful analysis of synchronous be-
havior in nonlinear dynamical systems exhibiting oscilla-
tions. When neuron models of the PL or FHN types are mu-
tually connected by weak couplings, the coupled systems can
be reduced to a system consisting of the phase degrees of
freedom. We give a discussion and conclusion in Secs. V and
VL

II. GENERALIZATION OF SPIKING NEURONS
WITH SYNAPTIC COUPLING

We shall begin by introducing a different assumption of
two interconnected neural oscillators of the PL type with
excitatory or inhibitory synaptic coupling. We assume that
the time scale (u>0) for the y variable is the same as the
one for synaptic responses. Therefore we write this coupled
model in the general form:

dX;

= FI(XZ) + GI(X:) (l = 1’2)’ (3)
dt

where i represents a counterpart of the ith neuron. i=2 if
i=1 and vice versa. X;=(x;,y;,s;)7 € R® and T denotes trans-
pose. x; is a fast variable while y; and s; are slow recovery

and synaptic variables, respectively. While G,(X;) represents
a coupling vector, F,(X;) is a baseline vector field:

f(xi»)’i)
Fi(Xi) =| mg(x,y) | (4)
/’Lh(‘xi’si)
f(xi7yi)=FPL(~xi)_yi+Iapp’ (5)
g(x;,y) =x;+a-by, (6)
0—s=1 (x;,=6),
hloxsi) = {— Bs; (x; <), )

where

—mx+(p+m)6, +q, forx=< 6,
FPL('x) =\px+gq, for 01 <x< 02, (8)
—nx+(p+n)b,+q, for 6, <x.

p(>0), g, m(>0), and n(>0) are constants. #; and 6, are x
values respectively at the left and right knee of x-nullcline as
shown in Fig. 1(a). We suppose that 6, <[a+b(l,,,
-q)]/(bp—1)< 6, and p<1/b so that the model represents
an oscillatory system exhibiting spontaneous periodic firing.
In particular, p=2/3, ¢=0, m=n=4/3, 6,=-1, 6,=1, and
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FIG. 1. (Color) Singular perturbation approach of the PL model.
(a) Phase plane of the PL model with w=0.2. The red lines indicate
dynamical flow while the green lines present the nullclines, those
are x=0 and y=0. (b) Time evolutions of membrane potential x as
 becomes smaller. The temporal duration between points means a
velocity of x. The x motion on the active or inactive phases be-
comes gradually slower. W is a variable normalized by a periodicity.
(¢c) m—0; membrane potential and synaptic response are repre-
sented, respectively, as the red and blue lines. Here we set a=0.8,
b=0.01, p=2/3, g=0, m=2, n=1, 6;=-1, 6,=1, and B=1.

1,,,=0 enable us to show the PL type of the FHN model
[46]. The phase plane (x,y) can be appropriately used as a
geometrical tool. The x nullcline (defined by dx/dt=0) has
an inverted N-shape while the y nullcline is monotonically
increasing. Both the nullclines are represented as green lines
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in Fig. 1(a). In previous studies, y has been often regarded as
a gating variable of a total ionic channel in the HH model by
piecewise linearization as a geometrical tool in the phase
plane [57,58]. However, in this study, it would represent the
membrane potential but not such a gating variable, because
the singular perturbation approach with w allows us to obtain
a linear equation of x and y [as described in detail below, Eq.
(14)].

For Eq. (7), we incorporate a first-order kinetics instead of
an « function. S is the synaptic decaying relaxation rate, as
shown in Fig. 1(c). The synapse response can be generally
regarded to be slowly varying [53]. In real neurons, it has
been experimentally observed that such responses are slower
than the time scale for the action potential [54-56]. For the
coupling vector G,(X;), we select two kinds of vectors,

(07 - /“Lgsynszz O)T (9)

and

(gXV\'nS[T’O’O) T’ ( 1 O)

where g, shows the synaptic strength. For Eq. (9), it repre-
sents respectively excitatory and inhibitory couplings for 0
< gsyn<{[(02_a)/b]_p02_q_lapp}b and {[(01 +Cl)/b] —[701
—q—1I,ptb < g, <0. Meanwhile, for Eq. (10), excitatory
and inhibitory couplings are shown when 0<g,,, <[(6,
_a)/b] _p02_q_lapp and [(01 +a)/b]—]7 01 _q_lapp <gsyn
<0. We notice that cases using another coupling such as
diffusive coupling, a functions with or without a reversal
potential, are also satisfied by the following approach.

We consider the case of G(X7)=(0,-ug,s:,0)". To
switch from fast dynamics to slow, we change the time scale
to 7=ut and rewrite the coupled PL equation:

dx,»

MEzFPL(xi)_yi"'Iapp’ (11)

dy;

szi"'a_byi_gsynszf’ (12)
ds;
— = h(x,s,). 13
Iy (x;s ;) (13)

As u becomes smaller, the motions in the active and silent
phases become slower while the switching motions between
them become faster [Fig. 1(b)]. Then, taking the limit u
— 0, a simplified PL model is obtained:

0=FPL(xi)_yi+Iapp’ (14)
dy; -
;zxi-"a_byi_gsynsiv (15)

ds.
i=l’l(xi,sl‘). (16)
dr

Here the transition between the silent and active phases be-
comes instantaneous because dy/dt=0 as the time scale is
not changed and u—0. These equations are the simplified
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version of the coupled PL model. They ignore the switching
motions between the active and inactive phases and give
attention only to the active and inactive phases. We depict
Fig. 1(c) to show that the trajectory follows a vertical broken
line to enter the active or inactive phases after arriving at 6,
or 6,. It is illustrated as the firing dynamic that occurs when
x arrives at 6, and instantaneously jumps up to X, (=[p(6,
- 01)+n02+1app]/ n). Then, it exponentially decays to 6,, af-
ter which it is abruptly reset to X.(=[p(6,—0,)+mb,
+1,,,]/m).

We continue by differentiating Eq. (14) with respect to 7.
Thus we obtain

@ _ IFpL(x;) dx;

= 17
dr ox dr (17)

Using Egs. (14) and (17), Eq. (15) is transformed to a one-
dimensional differential model for the x variable with a cou-
pling, which is given by

dx

; = FDIF(xi) + GsynslT’ (1 8)
ds:
= (s, (19)
dr

- yx+X;, forxel[6,,x],

. _ 20
pIF(X) {—yOx+Xo, for x € [~ ,0,], .

where G,=g,,/k.k=m (for x=0,) or n (for x=6,). v,
=b+1/m, y;=b+1/n, Xo={-a+b[(p+m)6+q+1,,,]}/m
and X,={-a+b[(p+n)6r+q+1I,,1}/n. It is noted that the
transition u— 0 would leave the structure of the phase space
intact. Equation (20) is called the double integrate-and-fire
(DIF) model.

We can easily expect that y, determines the firing dura-
tion. As y; — o, the width of action potential vanishes. As a
result, we find that a simplified version of the coupled PL
model becomes precisely equal to the coupled original IF
model:

Ni_x, G 1)
— =Xy — YoXi + GoynSis

dt 0~ YoXi syn i
where the regime of x is only in [-%, #,]. As soon as the
activation variable x arrives at the threshold (x=6,) (because
the neuron is regarded as already having fired), it is reset to
X,.

The case of G(X7,7)=(g,,,s7,0,0)" has already been pur-
sued in previous studies [37,39,44]. Treating this case with a
similar approach as mentioned above, the simplified PL
model is obtained as follows:

0= FPL(xi) -yt Iapp + gsynS;’ (22)
dy:
i:xi-'-a_byi’ (23)
dr
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ds;

— = h(xivsi)~ (24)
dr

This indicates that in the phase plane analysis, the x;

nullcline was shifted upward by receiving an excitatory syn-

aptic input from neuron . If the state of neuron i is below the

local minima of the upward-shifted x; nullcline, it is forced to

enter the active phase of the new nullcline. Then, by using

Eq. (22) and its conversion,

dy; dsi  9Fp(x;) dx;

—go, = , 25
dr Bsym dr ox drt 23)
Eq. (23) is then rewritten as
dx: dS:)

—=F )+ G| bsi+ — |, 26
dr DIF(-xz) syn( Si dr ( )

ds;
l = h(xi,si) . (27)

dr

As a result, even though vy, — o0, we find the IF model with
the transformed synaptic coupling:

| 45
N =XO - YoXi t Gsvn bSIT+ e (28)

’ dr
We have revealed a qualitatively consistent relation between
the PL and the IF models with synaptic coupling when the
synaptic interaction term is inserted into the y dynamics of
the PL model.

In conclusion, the resulting different interaction terms of
Egs. (21) and (28) lead to deeper understanding of the dy-
namical behavior of the coupled PL models, because the be-
havior undoubtedly depends on whether the coupling term is
inserted into x or y dynamics. In fact, such a difference be-
tween two types of the insertions is also observed in con-
structing return maps to investigate synchronous behavior.
This will be explained below.

III. ANALYSIS FOR STATES OF THE TWO
COUPLED NEURONS

In order to clarify the detailed difference between addi-
tions of coupling term to x and y dynamics of the PL. model,
we need to systematically understand the behavior of the
dynamics of the two coupled neurons. To this end, it is very
convenient to analytically construct a return map correspond-
ing to the time evolution of Egs. (18)—(20) or (26) and (27)
[the system of Egs. (26) and (27) is referred to [46]]. The
return map analysis is regarded to be a good approach for
observations of the system into mathematically rigorous map
for the spike times between neurons [59]. Actually, it enables
us to gain some solutions exhibiting synchronization phe-
nomena in the two neurons with excitatory or inhibitory syn-
aptic couplings, according to the properties of neural or syn-
aptic dynamics.

A. Construction of return map

We proceed to solve Egs. (18)—(20) by taking into account
three fundamental cases.
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TABLE 1. Type-I time evolution of neurons 1 and 2 (type-1
temporal firing pattern diagram). The number of cases is 3. “+” and
“—" indicate that each neuron is firing and not firing.

Duration Case Neuron 1  Neuron 2
[0,A,] 1 + +
[A, A +A5] 2 + —
[A1+A2,A1+A2+A3] 3 - -
[A+A+A5, A+ Ay +As+A,] 2 - +

Case (i). Both neurons (i=j) are firing,

) =5 (1) 4 A {1 = e} (29)

i) =1. (30)

Case (ii). One neuron (i) is firing while the other (j) is not
(i, j: 172)7

X0 = X (1)e M) 1 A1 — N0}

+ Bls;(to){e_ﬁ(’_to) — e Nt} (31)
si(n=1, (32)

X(0) =27 (1) e 000 4+ Ag{l — e 000}, (33)
57 (1) = s;(to)e_ﬁ(t_’()). (34)

Case (iii). Neither neuron (i=j) is firing,
x77(1) = X7 (1) 0170 4 A {1 — e (10}

+ Bysj (1g{e 1710 — g7 20070}, (35)

s7(n) = si_(to)e"g("’“), (36)

where A\ =[X,+G,,, ]/ v, Ay=X,/ vy, A3=[Xo+Gyy, ]/ vo, A4
=Xo/ ¥o. B1=Gyy,/[y1-B). and B,=G, /[ vp-B] and the left
symbol in the superscripts of x; means that neuron i is firing
or not while its right represents the state of a counterpart of i.
Although we have investigated the solutions in the case of
B+# v, and v, the following analyses would be solved even
in the cases of B=1, and 7, as well as y; — .

Next, we focus on the state of the two neurons that exists
immediately after one of the neurons has fired. Supposing
that r=0 immediately after the membrane potential of neuron
1 has crossed the threshold 6;; let x77(0) [or xf_(O)]zx(I")
=X, &70) [orx;*(0)]=2), s7(0)=s\", and s3(0)
[or sg(O)]:s(z") denote the values of x; and s; (i=1 and 2) for
the nth occurrence of such states.

With the use of the three fundamental cases above, the
so-called temporal firing pattern diagrams (TFPDs) are ob-
tained. They represent how each neuronal firing dynamic
transits from the active phase to the inactive phase and vice
versa. The simplest and most important TFPDs are shown in
Tables I and II.

Table I shows that, supposing both the neurons are firing,
one neuron that stops firing earlier can start firing again to
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TABLE II. Type-II time evolution of neurons 1 and 2 (type-II
temporal firing pattern diagram).

Duration Case  Neuron 1 Neuron 2
[0,A(] 2 + —
[A1,A1+4,] 3 - -
[Aj+A, A +As+As] 2 - +
[A1+A2+A3,A1+A2+A3+A4] 3 - -

become active after the other neuron stops firing. Here we
notice appearances of difference of y coupling and x cou-
pling in constructions of the TFPD. This can be geometri-
cally explained by using the phase plane in Sec. II.

For Egs. (18)—(20), in the x-y plane, a nullcline of
dy/dt=0 can be shifted in the phase plane through the effect
of the coupling term. The shift means that as neuron 1, for
example, receives an excitatory stimulus from neuron 2, the
state of neuron 1 is forced to be on the left branch of x
nullcline until its local minima (6, ,p 6, +¢g), in order to enter
the right branch. However, for Egs. (22)-(24) [or Egs. (26)
and (27)], the x nullcline of neuron 1 is shifted upward by
receiving an excitatory synaptic stimulus from neuron 2.
Then, the state of neuron 1 can come below (6,,p6,+¢q
+1,,,) to start entering the right branch of the new nullcline.
This is a crucial mechanism that both the neurons can simul-
taneously fire in the x-coupling dynamic. The details are re-
ferred to [46]. Therefore we do not need a final temporal
diagram, [A;+A,+ A5, A+ A, +As+A,] of the type-1 TFPD.

Table IT demonstrates that, supposing both the neurons are
inactive, one neuron that starts to fire earlier can stop firing
to become inactive before the other neuron starts to fire.

In accordance with such features of TFPDs, one- or two-
dimensional return maps are then constructed as

X s D) (37)

(n) (n+1)

X2 X2

(S(2n) ) = (sgm) ) (38)
together with defining some synchronized solution, which is
represented as the time-lag rate between firings of the two
neurons at the nth iterate: d)(x(z")) [or ¢(x(2"),s(2"))]ET’/ T.
Here T represents neuron 1’s spike interval while 77 shows
the duration that it takes for neuron 2 to start firing after
neuron 1 has already fired. The solutions are also given by
¢=1 (or 0): the in-phase synchronized solution, 0.75< ¢
<1 (or 0< $=<0.25): the quasi-in-phase synchronized solu-
tion, 0.5<¢$<0.75 (or 0.25< < 0.5): the quasi-antiphase
synchronized solution, and ¢=0.5: the antiphase synchro-
nized solution. The in phase (or the antiphase) synchronized
solution is very similar to the quasi-in-phase (or the quasi-
antiphase) synchronized solution. However, such a classifi-
cation would be needed in order to find the effect of the
firing duration on synchronization phenomena in a pair of
coupled neurons, as described in the following sections.

or
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B. In-phase synchronization

We shall start by finding an effective condition that type-I
TFPD can be completely applied to study the one-
dimensional return map for the typical analysis of in-phase
synchronization behavior without alternating the two neu-
rons’ firing order. This condition is specified by the case if
one of the two neurons on the inactive phase arrives at the
threshold (6,) earlier than the other neuron. The condition in
which this case occurs can be obtained by considering the
temporal diagrams until A;+A,+Aj; of type-I TFPD. It can
also be described in terms of G, and 3 as shown in Appen-
dix A. Such (G,,,, B) regions [i.e., III-VIII] on the G,,,-B
plane are illustrated in Fig. 2(a) as an example. V

To define the return map corresponding exactly to type-I
TFPD where the nth state of the two neurons is set up as
x(ln) =X, S(IH)E 1, x(zn), and 5(2")= 1, we first suppose that dur-
ing time interval [0,A,], neurons 1 and 2 are in the active
phase and that at r=A,, neuron 2 stops firing and enters the
inactive phase. Using case (i), the state of the two neurons at
t=A, is denoted by

XA =X (A) =271 0)e M + A (1 - e, (39)
si(Ap) =1, (40)

A =251 (0)e A+ A (1 - eM18) = 6y,
—x"(A) =X, (41)

558 =s53(A) = 1. (42)

Next, let us suppose that for [A;,A;+A,], neuron 2 is in
the inactive phase while neuron 1 remains in the active
phase. At r=A,+A,, using case (ii), the state of the two
neurons is denoted by

X1 (A +Ay) =)cJ1'_(A1)e'““AZ +A,(1 - e Nh2)

+ BISE(AI)(e_ﬁAZ —e M) =g,
—x; (A +4,) =X, (43)
sTA+Ay) =57(A +4y) =1, (44)

X (A1 +A)=x"(A +4Ay) = x?(Al)e_yoAz +As(1 = e770M),
(45)

$5(A1+4,) = S£(A1)€_mz- (46)

Similarly, suppose that both neurons are in the inactive
phase for [A;+A,,A;+A,+A;]. Using case (iii), the state of
the two neurons at t=A;+A,+A; is denoted by

XA+ A+ Ag) =x7 (A + Ay)e 0% + A (1 — 70%3)
+ Bysy (A + Ay) (e — 77083 (47)

ST(A + A+ Ay) =s7(A + Ay)e P, (48)
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FIG. 2. Gj,,-B diagram and the bifurcation diagram for a small
v; and inhibitory coupling. As y;=1.0 in the case of inhibitory
synaptic couplings, (a) G,,,-B phase diagram. Region I: death os-
cillators [as shown in Fig.~3(a):|. Region II: the only antiphase syn-
chronized solution. Region III: the antiphase and quasi-in-phase
synchronized solutions. Region IV: the only in-phase synchronized
solution. Region V: the in-phase and quasi-antiphase synchronized
solutions. Regions VI and VIII: the in-phase and antiphase synchro-
nized solutions. Region VII: the in-phase, quasi-antiphase, and an-
tiphase synchronized solutions. Region IX: in addition to the an-
tiphase synchronized solution, (i) the in-phase synchronized
solution with alternating of the firing order of the two neurons ex-
ists. (ii) Figs. 3(b)-3(d)are demonstrated. (b) ¢-B diagram for the
linear stability as Gy,,=—0.4 are illustrated. The solid and broken
lines represent stable and unstable fixed points. B, and B3 are
saddle-node and inverse pitchfork bifurcation points, respectively.
B4 1s a boundary point to split into type-I and -II TFPDs.

(A + Ay + A3) =x, (A + Ay)e™ 083 + A (1 — e770%)

+ BZSI(AI + Az)(e_BA3 - 6_70A3), (49)

S;(Al +A2+A3) =S£(A1 +A2)€_'BA3. (50)

Here we have to consider the above described condition
where neuron 2 arrives at the threshold (6,) earlier than neu-
ron 1, —yy(X,—A3)e 0734 BB, (e PT3—¢~%73) < (. Based on
such a condition, we then obtain
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XE_(A1+A2+A3)= 01. (51)

The other state of the two neurons is also changed to
XA +A +A) =X (A + A+ Az), x5 (A +A,+A3)X,, and
S5 (A1 +A)+A3) —s5(A +A)+A3)=1.

Finally, we suppose that for [A;+A,+A3,A;+A,+A,
+A,], neurons 1 and 2 are in the inactive and active phases,
respectively, and that at t=A;+A,+A3;+A, neuron 1 is at
threshold #; when it starts firing again. Then, making use of
case (ii), the state of the two neurons is given by

XA+ A+ Ay + A =x77 (A + Ay + Ag)e™ 0%
+A5(1—e1084) = g,
—=x7T(A + A+ A5+ Ay) =X,
(52)

SI(AI + A2 + A3 + A4) = SI(AI + A2 + A3)€_BA4,
—>S-{—(A1 +A2+ A3 +A4) = 1,
(53)

.X;+(Al + Az + A3 + A4) =x§_(A1 + AZ + A3 + A4)
= )C;_(Al + Az + A3)€_YIA4 +A2(1
- 8_71A4) + BlSI(Al + A2 + A3)
X (e7PR4 — g™nhay (54)

S;(A1+A2+A3+A4)=1. (55)

Note that Eq. (54), which implicitly involves x(Z"), represents
the state of neuron 2 when neuron 1 starts firing again. We
arrive at the (n+1)th iterate of the return map for type-I
TFPD and now obtain the explicit expression for the one-
dimensional return map in terms of x(z" ,

A S A+ A+ A+ A) = FOGY).  (56)

It is more convenient to define the phase difference at the nth
iterate between the two coupled neurons as

(’l’} =X, —x, (xdl) =0). (57)

We straightforwardly obtain a one-dimensional return map
for the phase difference at the (n+ 1)th iterate,

xgit! = i),

=X, - FO(X,-x3), ()= 0). (58)

This return map is applicable for (X;+G,y,)/ 6, <y, <% as
well as for a broad region of the parameter space of Gy, and
B. Equation (58) is thus valid for (G,,,,8) in the regions
II-VIII of the G,,,-B plane [Fig. 2(a)]. This is because the
condition in which neuron 2 reaches the threshold 6, earlier
than neuron 1 is assumed to give Eq. (58) (see Appendix A).
A return map for region IX of the G,,,- 8 plane of Fig. 2(a) is
studied in Appendix B. )

We now analyze the map x(";l)—F I (x( ) Note that x,;,
=0 is a fixed point solution of xil“) Fl(xﬁh ) and gives rise
to the in-phase synchronization of the two coupled neurons.

n)

PHYSICAL REVIEW E 75, 011909 (2007)

The stability of this solution is examined by the linear sta-
bility analysis,

dF(0)  y(X, =4y - Gyue P
dxdif - nX,-A,)
Yo(X, = Ag)e T = BBy(e 7P — e
Yo(601 — A3)

(59)

This equation can also be obtained in a more intuitive man-
ner as given in Appendix A. The stability condition is given
by 0=<dF,/ dxd"f|xd1/=0< 1. For any (G,y,,B) in regions IV—
VIII of Fig. 2(a), we find that the above condition is satisfied
and that the in-phase synchronized solution is stable. It is
noted that for (Gy,, ) in regions IV-VIII, the approach to
the x,;;,=0 solution is monotonic with time. It is furthermore
noted that the quasi-antiphase and the quasi-in-phase ones
would be also obtained by solving this map.

Next, we study the return map for the condition —vy,(X,
—Ay)e" 134 BB, (e PT3—¢~%73) > (), which means that neuron
2 starts to fire after neuron 1 [ie., x5 (A;+A,+A3)
<x7(A;+A,+A;)]. Here it is noted that the return map is
different from Eq. (56), which can be satisfied with region IX
of Fig. 2(a). The phase difference at the (n+1)th iterate is
then defined as y(";]) (2"+1) ”+1 )(>0) at the time that neu-
ron 2 reaches the threshold 6. Hence we have the new map

J’d’z;l F2(xdzf) (60)

(), (n+2)

Iterating this map once more, we have the map x X

xg:;z) Fz()’fzzﬂ)) Fye Fz(xizrl'})- (61)

Since x;,=0 is a fixed point of the map, its stability condi-
tion is determined by

dF5[Fy(xgip)]
dF5(xgy)

dF; ° Fy(xgy)
dxd[f

Xdzjf=0 FZ(xdlf)=0

dF(xgif)
dx dif

X ‘W:O

— [M:r <1 (62)
- dx gig '

We show that the stability condition Eq. (62) is satisfied
with dF,(0)/dx, <1 for any (G,,,,8) in region (ii) of IX. It
is noted that the two neurons alternate their firing order and
are attracted to the in phase synchronized solution. However,
dF,(0)/dxz; can increase beyond 1 and break down the sta-
bility condition of Eq. (62) for a certain interval of Gy,
Then, in region (i) of IX of Fig. 2(a), the in-phase synchro-
nized solution becomes unstable. In addition, the stable (or
unstable) fixed point solution for x,;s=F,°F,(x,y) given by
Xqir# 0 emerges, corresponding to the two neurons becoming
synchronized with their constant (or irregular) phase differ-
ence and alternating (or, regularly and irregularly alternating)
firing order as shown in Figs. 3(b)-3(d).
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FIG. 3. (Color) Various types of synchronized solutions. (a) Death oscillators. (b) Two neurons become synchronized with a constant
phase difference, alternating the firing order of the two neurons. (c) These neurons alternate their firing order, irregularly changing the phase
difference. (d) In the two coupled neurons, the alternating, nonalternating of the firing order and their phase difference vary irregularly.

C. Antiphase synchronization

In order to investigate antiphase synchronization, we have
to find a condition that will allow us to select type-II TFPD
(as is shown in Table II) from various types of the TFPDs.
The condition is found by investigating whether the well-
known death oscillator [52,61] exists or not, that is, Ts—Tj
=0. This is studied in Appendix A and corresponds to region
I of Fig. 2(a). The death oscillator behaves as follows: One
neuron continues to fire periodically while the other’s mem-
brane potential cannot arrive at the threshold 6, [Fig. 3(a)].

x(2n+1)
(s(”+1) ) - F(H)(X(ZH)’S(;))
2

F(ZH) (XZ’ S2)

where the values of A4(A5,A5,A;,s,), As(Ay), Ay(A,x,),
and A,(s,) are numerically obtained by the following equa-
tions:

[{X,e 7022 + A, (1 — 7%0%2) 4 Bysye PR1(e7PR2 — 7 %082)} o704
+ A;(1 — e77083)]e7%084 1 A, (1 — 7 7084)

+By(ePha— 708y = 9, (64)

X5 4 Ay(1 = e 7189) 4 B e BB — o nds) = g,

(65)
{06708 4 Ay(1 — 7708 1) e 1082 4 A (1 — 7 70%2)
+ Bz(e_BA2 - e_VOAQ) = 01 . (66)
X, e A4 Ay (1 — e 121 4 Bysy(e PR — e 1) = 6,
(67)

This return map is applicable in a wider region of (G,,, ),
namely, regions II-IX of Fig. 2(a), compared to the region in

which the in-phase synchronized solution exists.
We investigate Egs. (63)-(67) to obtain the equilibrium
=) (m))zF(H)(x(;),sgw)) by numerical cal-

state (x(;),s(;)). (57,85

<F<1H)(x2,s2) ) (X,e‘yOA4 + Ay(1 — e 7084) 4 BoePBarA3)(p=Pha _ p=n0ha)

In this paper, we omit a return map for the death oscillator
because this is checked by numerical simulation.

As T5-T{<0, we can use the type-II TFPD to mainly
analyze the occurrence of the antiphase synchronized solu-
tion, ¢=0.5. To investigate such synchronization behaviors,
we consider nth iterate in the two neuron states as x(l") =X,
5(1")E 1, x(zn) and 5(2"), and then analyze a time evolution of
Table II in the same manner as in Sec. III B. This results in
the two-dimensional return map for studying the antiphase,
which is represented by

>, (63)

e P

culations causes the quasi-antiphase and quasi-in-phase syn-
chronized solutions to be acquired due to the parameters of
our model. Its stability of the fixed point (x(;),s(zw)) is then
determined by the roots of the characteristic equation

JFW (x(zoo),s(zw))
&(xz,s2)

where I is a 2 X2 unit matrix. The multiplier \ is the corre-
sponding eigenvalue of the above Jacobian matrix and is
given by

—\| =0, (68)

—
pE\p’-4q
A=

oF\"  oFiY
p=——+——

s

(9.X2 Js 2

1T 1I 1I 11
_ o s oF " oFyY

(9)62 os 2 os 2

q (69)

dX2 '
The numerical calculation of Egs. (67)—(69) makes us de-
duce that the fixed point is linearly stable if |\,|<1 and
unstable if |[\,|>1 for at least one value of *, that is, \,
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FIG. 4. (Color) B-¢ bifurcation diagram. (a) and (b) are B-¢
bifurcation diagrams for ;=10 and y;=100. Red and green lines,
respectively, represent stable and unstable fixed points.

>1. Hence a pitchfork bifurcation diagram in terms of
type-II TFPD is locally obtained. For example, as we can see
in Fig. 2(b), when B is small, the antiphase synchronized
solution at <;/>(x(2°c),s(2°c))=0.5 is unstable. At the critical value
B3, this solution becomes stable and two additional unstable
solutions arise from the point ¢=0.5.

IV. ANALYTICAL AND NUMERICAL RESULTS
OF THE COUPLED DIF MODELS

The whole return map is defined as xg") in the regions

[X,,6,] and [6,,X,] and for s(z") in [0, 1]. This can be ob-
tained by incorporating other TFPDs as well as the TFPDs
shown in Tables I and II. On the basis of such a return map,
we calculate various synchronized states as — 2 included in
the transient dynamics. As a result, according to the differing
duration of a firing (including the case of y; — ), we dem-
onstrate some parameter spaces of synaptic couplings (G,
-B) [Figs. 2(a) and 5(b)] and plots of ¢ as a function of B
[Figs. 2(b), 4(a), and 5(a)], resulting in the linear stability
analysis for the system with the two coupled neurons. Now
we set yo=1, Xy=X,=2, X,=X,=0, and 6,=6,=1. We show
the results of the synchronization behavior of our system
obtained theoretically and by numerical simulations.

A. Inhibitory synaptic coupling

We shall examine systematically the detailed behavior of
the two DIF neuron models with inhibitory synaptic interac-

PHYSICAL REVIEW E 75, 011909 (2007)
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FIG. 5. (Color) Excitatory couplings for y;=10. (a) B-¢ bifur-
cation diagram for Gy,,,=0.1. Red and green lines, respectively, rep-
resent stable and unstable fixed points. (b) Gy,-B phase diagram.
Region i: type-I quasi-in-phase synchronized solution. Region ii:
type-II quasi-in-phase synchronized solution. Region iii: type-II
quasi-antiphase synchronized solution. Region iv: the antiphase
synchronized solution. ¢(x(2°c),s(2°°))=0.75, which represents a
boundary line between regions ii and iii, divides synchronized so-
lution into the quasi-in-phase and quasi-antiphase ones.

tions, in order to understand the more theoretical analysis in
Sec. III. For the case of y;=1, as dynamical behavior of the
two neurons move toward a completely synchronous state,
alternations in their firing order do not occur for (G,,,) in
regions IV-VIII of Fig. 2(a). In the weak strength regions of
Fig. 2(a), saddle-node and inverse pitchfork bifurcations
have been obtained by the linear stability analysis for type-I
and -IT TFPDs, respectively [see Fig. 2(b)]. Due to the coex-
istence of these bifurcations, a diversity of synchronization
behaviors can be observed due to the differing values of G,
and B. As |G,,,| becomes larger, the phase state of the syn-
chronized solution of the two neurons shifts to (Gyyn-P) in
region IX. In addition to the antiphase synchronized solution,
the two neurons become synchronized in the in-phase, tem-
porarily alternating their firing orders (region ii in IX). For
(Gyyn»B) of region i in IX, we can also see that the two
neurons behave as shown in Figs. 3(b)-3(d), which have not
been analytically and numerically investigated so far. When
the minus quantity of G,,, becomes larger in region IX, the
behaviors of the two neurons shift as follows: Fig. 3(b) —
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Fig. 3(c) — Fig. 3(d). Finally, the continuing growth of |G|
leads to a transition to region I exhibiting death oscillator.

When v, is gradually increased, the saddle-node bifurca-
tion disappears while the inverse pitchfork bifurcation begins
to dominate in the ¢-8 diagram, as shown in Fig. 4(a). This
is because type-II TFPD now becomes a more applicable
diagram for our system than type-I TFPD. As 3 is small, the
two neurons can simultaneously fire, independent of their
neuronal states. For B larger, they are in the in-phase or
antiphase synchronized states due to the initial conditions of
our model. This is almost identical to the bifurcation diagram
that has been already reported in [32,60]. This agreement
enables us to expect that the width of an action potential
would play an important role in inhibitory synchrony. For the
weak coupling, tremendously complicated synchronous be-
havior such as regions III-VIII in Fig. 2(a) can be no longer
monitored. There exists only the in-phase synchronized so-
lution region and the region of co-exsistence of the in-phase
and antiphase states For the strong coupling, the two-neuron
behavior is almost kept under the actions as shown in Fig.
2(a).

As vy, becomes larger, an inverse pitchfork bifurcation
point B\ of Fig. 4(a) decreases and then disappears for weak
coupling. The B-¢ diagram such as Fig. 4(b) (for y,=100) is
then obtained. Finally, in the case taking the limit y;, — %, we
do not have to take type-I TFPD into account. This enables
us to easily deduce that unstable quasi-in-phase synchronized
solutions [which are shown by green lines in Fig. 4(a)] can
undergo a transition to unstable in-phase synchronized solu-
tions. We only need to perform the linear analysis of the
firing time difference of neurons, which determines the
boundary line between asynchronous and death oscillator
states for (G,y,,/B). Therefore the death oscillators are ob-
served in a region of small 8 while the antiphase synchro-
nized solution can also be obtained.

B. Excitatory synaptic couplings

We investigate synchronous behavior in two excitatory
coupled DIF neurons having any values of +,. For weakly
coupled DIF models, when 7y, becomes progressively larger,
one can see the pitchfork bifurcation by linear stability
analysis [as shown in Fig. 5(a)]. The stable antiphase syn-
chronized solution undergoes a transition to two stable quasi-
antiphase and unstable antiphase ones as 3 becomes system-
atically larger. Similar to the case of inhibitory coupling, we
have demonstrated such a pitchfork bifurcation result, which
is in good agreement with [32,60].

For B small, as shown in Fig. 5(a), we have found it
difficult for the two neurons to be in a synchronous state
even though the coupling is strong. This is only because the
pitchfork bifurcation point B5* of Fig. 5(b) takes the larger
value as G, becomes larger.

In the case of y,> 1, the pitchfork bifurcation point of B
vanishes. Antiphase as well as in-phase synchronized solu-
tions are unstable while the quasi-in-phase synchronized so-
lution is stable for any S. This is the opposite stability result
to Fig. 4(b). As a result, in addition to the differing degree of
G,y the quasi-in-phase synchronized solution region such as

PHYSICAL REVIEW E 75, 011909 (2007)

region iv of Fig. 5(b) is transited to the whole B-G,,, dia-
gram. Furthermore, taking the limit of v, — o, type-Il TFPD
can be solely applied so that the stable quasi-in-phase syn-
chronized solutions turn into stable in-phase ones. Therefore
for any (G,,,,B), we have demonstrated that the two neurons
synchronously fire.

C. p boundary of synchronous behavior

We shall confirm that a y-coupled system of Egs.
(18)—(20) is applicable and convenient for studying synchro-
nization phenomena of neurons. For this, we employ a phase
reduction analysis [48-52]. In the phase reduction analysis,
we can reduce the weakly coupled oscillatory models to
equations consisting of the phase degrees of freedom [Ap-
pendix C]. Using the obtained phase equations, we system-
atically give an explanation of the synchronization phenom-
ena with a time scale parameter u. The phase equations are
obtained as follows:

W0 < - 9 -] =G, (T0)

t

T
Hid=1 [ @O R ga (=12, o1
0

where ¢=0,-0, denote the phase difference between the
two neurons. It is noted that ¢ corresponds to the one in the
return map analysis. G is expressed as an average interaction
function of ¢ due to the different p values. We assume that
the coupling vectors P; are (0,—us;,0)” and (s7,0,0)7.
{Z(1)}" is the so-called phase response curve, which can of-
ten be measured as a neuronal firing property. G(¢,)=0 so
that the synchronized solution is a fixed point to our system.
For €>0 (excitation), the solution is stable if G'(¢,) <0
while it is unstable if G'(¢,)>0. The stabilities for the in-
hibition system (that is, €<<0) are opposite to those for the
excitation system. Thus using such stabilities for 8> B (or
B, we can obtain a restraint condition to maintain synchro-
nous behavior of Figs. 4(a) and 5(a).

For w less than a critical value u.(=0.35) [see Fig. 6(a)],
the excitatory y-coupling system of the PL model have only
stable quasi-in-phase and quasi-antiphase synchronized solu-
tions, but also two unstable in-phase synchronized solutions
and one unstable antiphase synchronized solutions. As u is
increased over ., this system fails to have a stable quasi-in-
phase synchronized solution. Only the unstable in-phase and
stable antiphase synchronized solutions remain.

Synchronous states in an excitatory x-coupling system of
the PL model should be contrasted with those in the
y-coupling system, because the same set of solutions exists
but all of their stabilities are reversed [Fig. 6(b)]. For u
small, stability analysis using the phase reduction method
makes predictions about our previous investigation of [46]:
For excitatory coupling with a large (3, the two neurons be-
come synchronized in the in- phase or antiphases depending
on the initial conditions. When g is small, they become syn-
chronized in-phase. For 8 large, the x-coupling system also
has a critical value of u, (=0.082), where two unstable syn-
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FIG. 6. (Color) Phase reduction analysis for FHN and PL model
with a finite u. (a) and (b), respectively, demonstrate G plotted as a
function of the phase ¢ for y- and x-coupled system of the PL
model with ©=0.01, p=2/3, ¢=0, m=n=2/3, 6;=-1, and 6,=1.
Four different u values are shown. Stable or unstable equilibrium
states correspond to 0 crossing with negative or positive slopes. (c)
B-¢ bifurcation diagram for a y-coupled system of FHN model
[Egs. (1) and (2)] with u=0.01. This agrees with numerical simu-
lations for a y-coupled system of the PL model.

chronized solutions disappear, and only two stable in-phase
and one unstable antiphase synchronized solutions remain.
For the inhibitory y- or x-coupling systems, the stability re-
sults are opposite to those just described.

For the FHN model with a finite w, similar results to the
cases using the PL model are found. As an example, inves-
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tigating the y-coupling system, we have depicted a pitchfork
bifurcation diagram of Fig. 6(c). This is in good agreement
with the results in this study using the DIF model. As u is
small, for small values of the synaptic relaxation decaying
rate B3, there are two plausible synchronized states exhibiting
either ¢=0, 1 or ¢=0.5. Only ¢=0.5 is stable. With increas-
ing B, corresponding to progressively faster decaying syn-
apses, there is a pitchfork bifurcation at a critical value of 8
and two more equilibria are produced. The antiphase syn-
chronized solution loses stability and continues as an un-
stable state. Two new stable solutions of the quasi-antiphase
synchronized are generated. As u is increased, the two quasi-
antiphase synchronized states for large B disappear and then
the antiphase synchronized solution is changed from unstable
to stable.

V. DISCUSSION

In order to discuss whether the width of an action poten-
tial plays a role in generating synchronization phenomena,
we summarize the return map analysis using our DIF models
coupled via inhibitory or excitatory synapses.

For strong inhibitory coupling, irregular synchronous be-
havior can exist. Bressloff and Coombes [61] utilized two
coupled IF models with the a function to reveal only the
existence of death oscillators for strongly synaptic strength
of the coupling. However, in our studies on the strongly
coupled system, in addition to the death oscillators, irregular
as well as antiphase synchronous behavior have been found.
The remarkable point that we would like to stress in this
paper is that the firing duration enables us to analytically
obtain a diversity of such synchronous behavior. Here we
notice that the synaptic coupling model in this paper is dif-
ferent from the a-function model. We would then have to
investigate behavior in the DIF models with synaptic cou-
pling exhibiting the « function.

On the other hand, for the weak coupling, reverse and
normal pitchfork bifurcation sequences have been observed
respectively as [ in inhibition and excitation are changed
[Figs. 4(a) and 5(a)]. In particular, an inhibitory synchrony
occurs independent of B values. Such synchronization prop-
erties in the two coupled neurons were already shown [32]. It
was suggested that the inhibition leads to a stable synchro-
nous state unless the time scale for rising synaptic response
is very short or the action potential is broad. However, our
studies have shown that the inhibitory synchrony is not pro-
duced by slowly rising synaptic response. Moreover, the
stable in-phase synchronized solutions remain even though
the firing durations become extremely short, because type-I
TFPD still works. Therefore the suggestion of [32] is not
sufficient. We can say that our coupled system of the DIF
model has a mathematically different property that the width
of an action potential and synaptic responses that rise quickly
but decay slowly make a pair of the weakly coupled neurons
act as shown in Figs. 4(a) and 5(a).

Chow and Kopell suggested for the first time that spike
shape and size play a large role in the generation of stable
synchronous state in improved IF models with gap junctions
[35]. They compared them to the cases for some biophysical
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conductance-based models, but the case using the synaptic
coupling was not explored. In the present study, we have
investigated in detail how the width of an action potential 7y,
affects the synchronization properties in a pair of coupled
oscillators, based on the relationship between the coupled IF
model and the coupled PL model.

As for whether the broad action potential essentially af-
fects the generation of inhibitory synchrony, there is still
ample scope for discussion. However, we have found that the
width of the action potential plays an important role in a
phase transition of synchronous behavior, on the basis of the
B-dependent bistable behavior of Figs. 4(a) and 5(a). Our
studies have shown that coexistences of a variety of synchro-
nous behavior result in the broad width.

We have applied a phase reduction method and numerical
simulations to x- and y-coupling systems of the PL model
with a finite w for n and m values in Eq. (8). For n smaller,
a slope of the right branch in the x nullcline becomes more
gradual in the x-y phase plane. The time when the trajectory
arrives at x=#6, becomes faster. This means that the firing
duration becomes shorter as n becomes smaller. On the other
hand, for m larger, the left branch slope is sharper. The la-
tency period during which the trajectory is on the inactive
phase becomes longer. Thus when m is larger and n is
smaller, the PL model with u<< . behaves more like the IF
model.

Due to a large value of m and small one of n, we observe
how weakly x- and y-coupled systems of the PL. model be-
have. For the x-coupled system, with w smaller than the criti-
cal value, the coexistence of in-phase and antiphase synchro-
nized solutions is obtained for B larger, whereas only two
in-phase synchronized solutions exist for a small 8. We can-
not observe a remarkable difference to our investigation of
[46]. The y-coupled system also allows us to acquire the
similar bifurcation diagrams such as Figs. 4(a) and 5(a).

Therefore we have found that as u<<p, is taken into ac-
count, synchronous behavior in the x-coupled system of the
PL model are not dependent of the width of an action poten-
tial, whereas the y-coupled system allows us to give an ana-
lytical explanation of how the width of an action potential
affects synchronization phenomena, similar to the case in the
limit of ©—0.

Furthermore, we compare systematic synchronous behav-
ior in x- or y-coupled PL model to the ones in coupled HH
model of type-I or type-II. In [46], the x-coupled PL model
with excitatory or inhibitory coupling behaves according to
stabilities of their synchronous behavior, which can be oppo-
site to the results of Figs. 5(a) or 4(b). We already showed
that such a behavior in the x-coupled PL model is consistent
to the result for using the type II HH model, independent of
the value of u. Employing the phase reduction method, we
have shown that the pair system of the y-coupled PL model
under a certain region of u demonstrates like behavior of the
type I HH model [62].

VI. CONCLUSION

In conclusion, our coupled system in the present work is
an analytically solvable model having a firing duration and
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mutually coupled via synapses that rise quickly but decay
slowly. It has some unique mathematical properties as well.
One of them can make synchronous behavior in weakly
coupled oscillators, which have been reported before. We
have also demonstrated how the width of an action potential
of neuron models influences a scheme of synchronized oscil-
lations. In particular, we have given the following condition
to increase the probability of synchrony in our model, inde-
pendent of any S values: y; = 100 make inhibitorily coupled
neurons achieve complete synchronization, although they
have the coexistence of an antiphase synchronized solution.
The condition of v, has also enabled excitatorily coupled
neurons to fire more and more in synchrony. However, it
should be noted that complete synchronization has been ob-
served.

We have clarified that our obtained results in an exactly
solvable approach taking the limit u©— 0 have agreed pre-
cisely with those of numerical simulations and the phase
reduction analysis for the PL or FHN models with small
m< .. This has given us good support for the use of the DIF
model [Egs. (18)—(20)] to investigate synchronization phe-
nomena of two coupled neurons.

Clarifying some aspects of the relationship between syn-
aptically coupled systems of a pair of the IF and the PL
models, we have shown an obvious difference in effect be-
tween insertions of coupling terms in the x or y dynamics, on
the synchronization phenomena in two coupled neurons, and
have interpreted the dynamical meaning of the y-coupled
system as unifying theoretically tractable models. In particu-
lar, the x-coupled and y-coupled PL models are respectively
capable of demonstrating the synchronous behavior of the
coupled type I and type II HH model.
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APPENDIX A: LINEAR ANALYSIS OF THE FIRING TIME
DIFFERENCE OF NEURONS NEAR 6,

We investigate each condition for the occurrence of the
following cases: (i) Neuron 2 arrives at the threshold (6,)
earlier than neuron 1. (ii) The existence of death oscillator.

To study the condition of the first case, we analyze the
state of neuron 1 (or neuron 2) near the firing threshold,
supposing A; and A, to be infinitesimally small, A;=T),
+0s; and Ay=0+ 85y, we set A3=T3+s3 (or A3=T5+ 5)).
Here, it takes T for the two neurons to drop down simulta-
neously to the inactive phase after they have fired. 75 shows
the duration in which they simultaneously enter again into
the active phase since they finished firing. Considering the
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moment when neuron 1 arrives at x;=#,; again, we have
Xre—'yo(T3+5S3) +A4{1 _ e—yO(T3+5s3)} +Bze—ﬁ(0+5s2){e—ﬁ(T3+5s3)
— e nTsd3) - g, (A1)
Up to the first order in Js, and Js3, we obtain Js5:

BB = )

8s3= sy,
P (X, = Ag)e 0 4 By(— BT 4 e 00T T
(A2)
where T is satisfied with the following equation:
X,e™ 073+ A (1 — e 73) 4 By(e7Pl3 — e 00T3) = ¢,
(A3)

Similarly, suppose that neuron 2 starts to shift up to the ac-
tive phase. Using the aforementioned analysis, we obtain
sy
Yo(X, = Az)e™ "3 5
S5 .
= %X, = Ag)e 073 4 By(= BT 4 ype0T3)
(A4)

!
Os3=

By &s;— 8s3, we can determine which of neurons 1 or 2 ar-
rives earlier at the firing threshold. As an example, a solid
boundary line of regions VI (or VIII) and IX of Fig. 2(a),
which corresponds to &si—8s3=0, gives us the resulting
equation:

= Y(X, = A3)e” 34+ BBy(eFT3—e70T5) =0, (AS5)

In Fig. 2(a), regions III-VIII indicate that neuron 2 reaches
the threshold (6;) earlier than neuron 1 (8s5—8s3>0),
whereas region IX demonstrates that neuron 1 arrives at the
threshold earlier than neuron 2 (8sy— 8s3<0).

Next, we examine the condition in which one neuron con-
tinues firing while the other is at rest. Assuming 8s;— 653
<0 of the condition for the occurrence of the first case, the
subsequent temporal firing pattern diagram (TFPD) illus-
trates that neuron 2 keeps being in an inactive phase before
the two neurons are not firing. We then suppose A =T,
+ 854 to be set up with As=Ts+ 855 (or As=T4+ 8s5) if neuron
1 (or 2) arrives at 6, earlier than neuron 2 (or 1) at A,
+A,+A;+A,+As. Using calculations for the zero order of
Os4, Oss, and Oss, Ts and T are given as solutions of the
following equations:

X, 0075 + Ay(1 = e 0075) 4 Bye BT (e BTs — ¢~ 0T5) = @),

(A6)

[{X,e™ 7073 + Ay (1 — e77073) + B, (e7PT3 — 7 %0T3) =074
+A4(1 = e 074) e 075 1 A, (1 — €7 7075)

+By(ePTs— e 0T5) = g, (A7)

where T; and T, are satisfied by Eq. (A5) and X,e "4
+A,(1—eMT4) 4 B e PT3(ePlaeT4)=9, From a differ-
ence of T; and T’s, we then get the condition where the death
oscillator occurs. The solid boundary line of regions I and II
in Fig. 2(a) is given by
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T{-Ts5=0. (A8)

APPENDIX B: RETURN MAPS FOR IN PHASE
SYNCHRONIZATION

According to the inequality &s;—8s3=0, we have two
cases of TFPDs based on which the corresponding return
map can be constructed. The two cases are displayed as I1I-
VIII, and IX in the phase diagram of Fig. 2(a).

Regions III-VIII can also be explained as &s;— &s3>0.
Using Egs. (18)—(20), we have the return map for a phase
difference x ;s

Firag) = (X, = A (1 = €130 = BB - g1,
(B1)
where A4(A3z,A,) and A;(A,) are given by

{X 7085 4 A (1 — e770%3) 4+ By PRo(e7PRs — 7 1083) )~ 1004

+A5(1—e %) =g, (B2)
{X,e™70%2 4 Ay(1 — e77082)}e7 7083 1 A, (1 — 7 70%3)
+ B,y(e7Ph3— e71083) = g, (B3)

Region IX, 8s;— 853 <0. We have
Falxa) = (43 = X)(1 =779 1 BePord (P 1)
(B4)

where A4(A5,A,) and A;(A,), respectively, satisfy the fol-
lowing equations:

[{X, e 7022 4 A5(1 — e770%2) 177085 1 A, (1 — e~ %03)
+ By(e P — ¢ 1083) ] i 4 AL(1 — e M020) = 6,

(B5)

X, 1085 1+ A4 (1 — e770%5) 4+ By PRa(ePRs — g 10d3) = g,
(B6)

Moreover, A,(A;) and A;(x,,) comply with the following
equations:

(X, e+ A (1 = e B ke 82 4 A,(1 - e N22)

+B (e Prr_ e By = g, (B7)

(X, = xg)e "B+ A (1 - e 1) = 6, (B8)

To conduct the linear stability analysis of xg;;l)=F l(xg;} , We
calculate the derivative of F l(xil';}) at x =0,

o LLoag\onsan, T on,
+a_m;ts]ﬂ;wm
A5 A,

dF,
dxay

9A, dxdif}Al=Tl,A2=O,A3=T3,A4=0.
(B9)
Using Eqgs. (B8) and (B3), T, and T satisfy
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X,e T4 A (1 —e )= 6,, (B10)

X,e” 0T34 Ay(1 = €7073) + By(e7 T3 — 7 %073) = 6.

(B11)

It then follows that Eq. (59) is acquired. Furthermore, the
phase boundary between the phases of VIII and IX, which is
defined by 8s;— 8s3=0 with infinitesimally small A, and Ay,
is given by

Yo(X, = A3)e™ "3 — BBy (ePT3— e %13) = 0.  (B12)

APPENDIX C: PHASE REDUCTION METHOD

The phase reduction analysis is briefly reviewed. The de-
tailed analysis is referred to [62,63]. Supposing a pair of
identical mutually x- (or y-) coupled PL or FHN neuron
models when the synaptic coupling is weak (e<<1), we apply
this method to the neuron models:

i _ F(x) + ePIXi0],

i (C1)

where F(X;) is a vector field as given by Egs. (1) and (2) of
the FHN model or Egs. (4)—(8) of the PL model. Here we
give two following definitions: (i) X(#) is the unique phase
asymptotically stable T-periodic function to dX/dt=F(X).
(ii) Z(r) is the unique solution to
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92O __p r X () ]'Z00),

7 (C2)

where the normalization condition {Z()}"-[dX(1)/dt]=1 is
satisfied for every 7. Z(r) is not only the phase response
curve, but also the adjoint solution to the linearization
around the limit cycle.

For € small, we can apply averaging to the coupled sys-
tem, to find

d®

d_tlzl‘l‘EHl(@l—@z), (C3)
= 1 +EH2(®2—®1), (C4)
dt
1 (" -
Hi(¢) = }J {Z,(0)} - Pt + p)dr, (Cs)
0

where P,(1)=P,[XH(1)]. Let $=0,-0, denote the phase dif-
ference between the two neurons. We thus obtain the follow-
ing phase equation:

dé

i (Co)

e[ Hy(- ¢) - H,($)].
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